Data Structures in C++ Assignment:
Assignment 1.1 [40 points]
Create a simple main() that solves the subset sum problem for any vector of ints. Here is an example of the set-up and output. You would fill in the actual code that makes it happen.
int main() {
 int TARGET = 180;
 vector<int> dataSet;
 vector<Sublist> choices;
 vector<Sublist>::iterator iter, iterBest;
 int k, j, numSets, max, masterSum;
 bool foundPerfect;
 dataSet.push_back(20);
 dataSet.push_back(12);
 dataSet.push_back(22);
 dataSet.push_back(15);
 dataSet.push_back(25);
 dataSet.push_back(19);
 dataSet.push_back(29);
 dataSet.push_back(18);
 dataSet.push_back(11);
 dataSet.push_back(13);
 dataSet.push_back(17);
	
 choices.clear();
 cout << "Target time: " << TARGET << endl;

	// code provided by student
	
 iterBest->showSublist();
	
 return 0;
}
The local variables you see above are not required; they come from my solution. If you want to use different local variables, feel free.
Your output style can be different from mine, as long as it contains equivalent information and is easy to understand. However, show enough runs to prove your algorithm works, and show at least one run that does not meet target, exactly. Also, provide a special test to quickly dispose of the case in which the target is larger than the sum of all elements in the master set. This way, any target that is too large will not have to sit through a long and painful algorithm. Demonstrate that this works by providing at least one run that seeks a target larger than the sum of all master set elements.
Finally, you are not finding all solutions, just one representative solution. There may be other subsets that do the job, but our algorithm only finds the one. (If you want to show all the solutions, that's fine.)
A run for the above would look like this:
Target time: 180
Sublist -----------------------------
 sum: 179
 array[0] = 20, array[1] = 12, array[2] = 15, array[3] = 25, array[4] =
 19, array[5] = 29, array[6] = 18, array[8] = 11, array[9] = 13, array
[10] = 17

Press any key to continue . . .
Notice how the target is not precisely met. Usually it is, so if you vary the target, you'll find that you can a perfectly matching sum.
At the very end of this document I've pasted a more informal (compared to the lesson) explanation of the algorithm. I think it may help some of you understand the algorithm. If it doesn't help, that's ok, you can ignore it.
Assignment 1.2 [55 points]
Next create a main() that solves the subset sum problem for any vector of iTunesEntries. You have to replace the term int with the term iTunesEntry in most places in the above program, but don't do this mindlessly - some ints remain ints. There is a twist, as well: iTunesEntry does not support the cout << someTuneObjectexpression which is used in your Sublist class (no doubt, in showSublist()), so you have to overload the << operator as a global scope function to make this happen. Likewise, in your first solution you will have an expression similar (or identical) to this:
 ... choices[j].getSum() + dataSet[k-1] ...
This works fine if dataSet is a vector of ints, but if it is a vector of iTunesEntries, then it will not work; you can't add an int (the return type of getSum()) to an iTunesObject. Or can you? If you overload the + operator as a global scope function, you can! Therefore, you'll have to make that adjustment. When you make these adjustments, you should be able to use the modified main() and class on iTunesEntry vectors to solve the subset sum problem. Here is your main set up and run:
int main()
{
 const int TARGET = 3600;
 vector<iTunesEntry> dataSet;
 vector<Sublist> choices;
 vector<Sublist>::iterator iter, iterBest;
 int k, j, numSets, max, array_size, masterSum;
 bool foundPerfect;

 // read the data
 iTunesEntryReader tunes_input("itunes_file.txt");
 if (tunes_input.readError())
 {
 cout << "couldn't open " << tunes_input.getFileName()
 << " for input.\n";
 exit(1);
 }

 // time the algorithm -------------------------
 clock_t startTime, stopTime;
 startTime = clock();

 // create a vector of objects for our own use:
 array_size = tunes_input.getNumTunes();
 for (int k = 0; k < array_size; k++)
 dataSet.push_back(tunes_input[k]);

 cout << "Target time: " << TARGET << endl;

 // code provided by student

 iterBest->showSublist();

 return 0;
}
Here is a run. Warning - don't use target times over 1000 until you have debugged the program or you may end up waiting.
Target time: 3600
Sublist -----------------------------
 sum: 3600
 array[0] = Cowboy Casanova by Carrie Underwood(236) , array[1] = Quitter by
Carrie Underwood(220) , array[2] = Russian Roulette by Rihanna(228) , array[
4] = Monkey Wrench by Foo Fighters(230) , array[5] = Pretending by Eric Clapto
n(283) , array[6] = Bad Love by Eric Clapton(308) , array[7] = Everybody's I
n The Mood by Howlin' Wolf(178) , array[8] = Well That's All Right by Howlin'
Wolf(175) , array[9] = Samson and Delilah by Reverend Gary Davis(216) , arra
y[11] = Hot Cha by Roy Buchanan(208) , array[12] = Green Onions by Roy Buchana
n(443) , array[13] = I'm Just a Prisoner by Janiva Magness(230) , array[14]
= You Were Never Mine by Janiva Magness(276) , array[15] = Hobo Blues by John
Lee Hooker(187) , array[16] = I Can't Quit You Baby by John Lee Hooker(182)

Algorithm Elapsed Time: 0.67 seconds.
This time, notice how we get a perfect hour's worth of music in a short list of 72 random tunes. This is typical. If you don't get perfect targets most of the time, your algorithm is probably wrong.
Submit Your Work
Name your files a1_1.cpp and a1_2.cpp. I prefer that you copy the Sublist class into these two files, but if you submit a separate Sublist.h file, that's ok too. Execute each program and copy/paste the output into the bottom of the corresponding source code file, turning it into a comment. Use the Assignment 1 Submission link to submit both files. When you submit your assignment there will be a text field in which you can add a note to me (called a "comment", but don't confuse it with a C++ comment). In this "comments" section of the submission page let me know whether the programs work as required.
The Algorithm Revisited
Problem Statement:
The objective is to find the "sub-list" of numbers, taken from a given list of numbers, that has a sum as close as possible to the target without going over.
For example, if the original (given) list of numbers is { 15, 4, 9, 17, 6, 13, 3, 19, 12, 10}
Then examples of sub-lists would be
{}

{15}

{13}

{4, 12}

{17, 9, 12, 6}

{ 15, 4, 9, 13, 3, 19}

{ 15, 4, 9, 17, 3, 19, 12, 10}

{ 15, 4, 9, 17, 6, 13, 3, 19, 12, 10}
In this particular example, there will be more than 1000 sub-lists.
If the target is 40, then one possible answer to the "subset sum" problem would be {15, 4, 9, 12}, since the sum of these numbers is 40. In some cases it might be the case that none of the sub-lists contains numbers that add up exactly to 40, so we would have to find the sub-list whose numbers come CLOSEST to adding up to 40.
Algorithm:
Things get a little confusing because we are talking about 3 different types of lists. (1) We have the original list of numbers, (2) we have sub-lists of that original list, and then (3) we are going to create a list of all sub-lists of the original list whose numbers add up to <= the target. I'm going to call that last list "Col", just so I don't have to keep repeating "the list of all sub-lists of the original list whose numbers add up to <= the target" over and over again.
Going back to our example above, all of the examples of sub-lists that I gave ({}, {15}, {17, 9, 12, 6}, etc.) would be in Col, along with several hundred other sub-lists.
Here's how we create Col:
1. Initialize Col so that it just contains one sub-list, the empty sub-list.
2. Loop over all the numbers in the original list. For each number x in that original list:
a. Loop over all the sub-lists that are already in Col. (So, the first time we get here, that will be just one sub-list, the empty sub-list.) For each sub-list L that is already in Col:
i. if adding x to L would create a sub-list whose sum is <= the target, create this new sublist (L + x) and add it to Col.
ii. if adding x to L would create a sub-list whose sum is > the target, do nothing.
iii. if adding x to L would create a sub-list whose sum is equal to the target, create this new sublist (L + x), add it to Col, and then break from both loops. Because we found a sub-list whose sum is exactly the target, we can stop looking.
At this point, Col is a list of all the possible sub-lists of the original list of numbers whose sum is <= the target. (Or, if Col doesn't include ALL of these possible sub-lists, then it includes a sub-list whose sum is equal to the target.) So now the easy part:
3. Look through all of the sub-lists that are in Col and find the one that has the largest sum.

Please follow these style conventions when writing the assignment. Thanks
Style Conventions
[How To Get Good Grades On Your Programs]
[bookmark: _GoBack]In the real world, programmers usually work in teams and often the company that they work for has very precise rules for what kind of style to use when writing programs. For this reason, and also to encourage good programming style, we will be adopting the following style conventions for this class. This is not to say that these rules represent the only good style for writing computer programs (although in most cases they do). After you finish CS 2C, you may decide that you prefer a different style than what is required here. However, in order to get good grades on your programming projects in this class, you must follow these guidelines.
Note: By this point you all have a lot of programming experience and have developed your own styles. I will be flexible about most of the guidelines below if your approach is reasonable.
1. critical. You may lose points if you fail to implement this.
2. Not important that you do it exactly this way, but you must have some way to accomplish the same thing.
3. If you disagree, you can ignore.
If you're not sure what is required exactly, please ask!
1. Documentation:
A. Initial File Comment [2]: Your programs should be well-documented. Each program should begin with an initial file comment. This comment should start by indicating your name, class, date, instructor, name of file, etc. Next it should describe in detail what the program does and how the code works. Any input expected from the user and any output produced by the program should be described in detail.
Important local variables should be commented at their declaration. Aside from this, in most cases it should not be necessary to place comments in the body of a function. This usually clutters up your code and ends up making the function more difficult to read. If you find yourself needing to explain something in the middle of a function, perhaps you should look for a clearer way to write it!
B. General Advice [1]: Your comments should be directed toward a reader who is an expert C++ programmer. You should not explain features of the language!
C. Function Comments (Global Functions)[2]: Just above each of your global function definitions you must provide a comment describing what the function does. A simple function might have a 15 word comment, while a more complex function should have a comment of at least 50 words. Make sure to explain the role of each parameter in your function comments, and refer to them by name. Use of pre/post conditions is encouraged.
D.Comments in Classes: If this is your first time using the following guidelines for writing comments in a class, try your best to follow the instructions below, but don't worry too much about getting everything just right. You'll get full credit if it looks like you gave it your best shot.
D.1. Header File [2]: In the case of a class, the header file should begin with a (typically) very large header comment. This comment should include a general description of the class (so a client programmer can tell right away whether she wants to use it), followed by a listing of all of the prototypes of public members, each with pre and post conditions. Note that this list of prototypes is still part of the comment. You will have to list the prototypes again in the code below this header comment! You are required to use pre/post conditions to document your public member functions. Do not include any comments regarding the implementation details in the header file! This very large comment will then be followed by the header file code (e.g. the class declaration), with no comments.
More info about pre/post conditions: page 1 | page 2
D.2. Implementation File [2]: In the implementation file you should start with a class invariant. (I don't expect you to have prior knowledge of what a class invariant is. The description that follows should suffice.) The class invariant will include a description of the private data members and how they are used, as well as a statement of anything that you guarantee will always be true for class objects (for example: "fraction objects will always be stored in lowest terms"). Aside from the class invariant, the only comments you will need in your implementation file are comments on the implementation of complex functions, and comments on private functions (which do not get comments in the header file).
2. Appearance:
A. General [2]: Use lots of whitespace (blank lines and spaces) to separate the different parts of your program!! When I look at your program my first impression should not be a page crammed with code. Get rid of wraparound. Put a blank line between your declarations and your statements. Put a space before and after each operator so that instead of

cout<<"Hello"<<x<<"my name is"<<endl<<bob;

you write

cout << "Hello" << x << "my name is" << endl << bob;
Make sure your lines aren't too long, no more than 80 or 90 characters.
B. With Functions [2]: Put at least 6 blank lines between function definitions.
3. Identifier Names:
A. General [1]: Choose your identifier names very carefully. Variable names should precisely represent what the variable is storing. Do not use abbreviations unless you have seen the abbreviation used in a lesson. Don't use one letter variable names except, perhaps, in for loops.
B. With Functions [1]: Choose your function names so that as much as possible your program reads like English and the names describe precisely what the function does. Void function names should start with an action word (readString, getData, etc.).
4. Decomposition [2]:
Any time there is a sequence of statements in your program that performs a specific, nameable sub-task, you should consider making that sequence of statements into a function. A nice length for functions is about 10 lines, although in CS 2C there will be occasions on which you'll have functions significantly longer. Consider making complex functions (for example, nested loops) even shorter. A goal: when you are done with your program, I ought to be able to look at any particular function and have a general understanding of what is does and how just at a glance.
5. Indentation [2]:
Indents must be exactly 4 spaces.
You may follow the indentation scheme used in the textbook or you may use the scheme used in the lectures. No others. For example, every statement must appear on a line by itself, every close curly brace must appear as the first (or only) item on a line, and every open curly brace must appear as the last (or only) item on a line.
6. Simple Code/No Repeated Code [1]:
Make sure that your code is as simple as possible and that there is no unnecessary repeated code.
7. Miscellaneous:
a. [1] In most cases no numbers other than 1 or 0 should appear in your program. Other numbers should usually be declared as global constants.
b. [1] Do not use any global variables!! Violating this guideline will cost you a lot of points!
c. [3] You should follow the "single entry -- single exit" rule for functions and loops. This means that you should not use a statement like "break" (except in a switch statement), "return" (except in a value-returning function), "exit", or "continue".
d. [1] Use pass by value unless you have a good reason to pass by reference. Always pass objects by reference. When passing an object by reference, use the "const" modifier when the value of the parameter should not be modified.
e. [3] Don't mix up statements and expressions. For example, count++ should not be used as an expression, but as a statement.
f. [3] You must use a value-returning function if (a) there is exactly one value being communicated to the calling function, and (b) there is no input or output occurring in the function.
g. [3] Use a for loop for counter controlled loops. Do not use a for loop for any other kind of loop.
h. [3] Never use the fact that C++ implements true and false using the int values 1 and 0. For example, never use 1 or 0 in the place of true or false.
i. [1] Use only standard C++.
j. [3] Don't use typedef except to declare a type in a class declaration so that the client can use it.
k. [1] Never use goto.
l. [3] Never use the ?: operator.
m. [3] Don't use the preprocessor except for #include and for making sure that a header file is not multiply included (#define, #ifndef, and #endif).
n. [3] Use initializor lists only in the context of inheritance.
o. [3] The characters "== true" or "== false" should never occur in your code.
p. [3] You should never have
q. if (x) {
r. return true;
s. } else {
t. return false;
u. }
in your code. This can be replaced with simply
return x;
v. [2] Don't use inline member functions

